docs: Add development plans for VLLM agent infrastructure

Implementation plans for LLM agent orchestration work:
- Hour 1: Action parser and executor design
- Hour 2: WorldGraph foundation design
- Hours 3-4: Integration and multi-turn demo design

These plans were used to parallelize development of #155 and #156.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
John McCardle 2025-12-14 12:54:03 -05:00
commit eb4a398e09
3 changed files with 1981 additions and 0 deletions

View file

@ -0,0 +1,391 @@
# Hour 1: Action Parser & Executor
**Issue**: #156 Turn-based LLM Agent Orchestration
**Goal**: Agents can actually move when they say "GO EAST"
**Parallelizable with**: Hour 2 (no dependencies)
---
## Deliverables
1. `action_parser.py` - Parse LLM text responses into structured actions
2. `action_executor.py` - Execute parsed actions in the game world
3. Modified `1_multi_agent_demo.py` - Integrate parser/executor to show movement
---
## File 1: `action_parser.py`
```python
"""
Action Parser for LLM Agent Responses
=====================================
Extracts structured actions from free-form LLM text responses.
Handles variations like "Action: GO EAST", "I'll go east", "GO E", etc.
"""
import re
from dataclasses import dataclass
from typing import Optional, Tuple, Any
from enum import Enum
class ActionType(Enum):
GO = "GO"
WAIT = "WAIT"
LOOK = "LOOK"
TAKE = "TAKE"
DROP = "DROP"
PUSH = "PUSH"
USE = "USE"
OPEN = "OPEN"
CLOSE = "CLOSE"
ANNOUNCE = "ANNOUNCE"
SPEAK = "SPEAK"
INVALID = "INVALID"
@dataclass
class Action:
type: ActionType
args: Tuple[Any, ...] = ()
raw_match: str = ""
class ActionParser:
"""Parse LLM responses into structured actions."""
# Direction normalization
DIRECTIONS = {
'N': 'NORTH', 'S': 'SOUTH', 'E': 'EAST', 'W': 'WEST',
'NORTH': 'NORTH', 'SOUTH': 'SOUTH', 'EAST': 'EAST', 'WEST': 'WEST',
'UP': 'NORTH', 'DOWN': 'SOUTH', 'LEFT': 'WEST', 'RIGHT': 'EAST',
}
# Patterns ordered by specificity (most specific first)
PATTERNS = [
# Explicit "Action: X" format (preferred)
(ActionType.GO, r'Action:\s*GO\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.WAIT, r'Action:\s*WAIT\b', 0),
(ActionType.LOOK, r'Action:\s*LOOK(?:\s+AT\s+(\w+))?\b', 1),
(ActionType.TAKE, r'Action:\s*TAKE\s+(\w+)', 1),
(ActionType.DROP, r'Action:\s*DROP\s+(\w+)', 1),
(ActionType.PUSH, r'Action:\s*PUSH\s+(\w+)\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)', 2),
(ActionType.USE, r'Action:\s*USE\s+(\w+)(?:\s+ON\s+(\w+))?', 2),
(ActionType.OPEN, r'Action:\s*OPEN\s+(\w+)', 1),
(ActionType.CLOSE, r'Action:\s*CLOSE\s+(\w+)', 1),
(ActionType.ANNOUNCE, r'Action:\s*ANNOUNCE\s+["\'](.+?)["\']', 1),
(ActionType.SPEAK, r'Action:\s*SPEAK\s+["\'](.+?)["\']', 1),
# Fallback patterns (less strict)
(ActionType.GO, r'\bGO\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.GO, r'\bmove\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.GO, r'\bhead\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.WAIT, r'\bWAIT\b', 0),
(ActionType.LOOK, r'\bLOOK\b', 0),
]
def parse(self, llm_response: str) -> Action:
"""
Parse an LLM response and extract the action.
Returns Action with type=INVALID if no valid action found.
"""
# Normalize to uppercase for matching
text = llm_response.upper()
for action_type, pattern, num_groups in self.PATTERNS:
match = re.search(pattern, text, re.IGNORECASE)
if match:
args = self._extract_args(match, num_groups, action_type)
return Action(
type=action_type,
args=args,
raw_match=match.group(0)
)
# No valid action found
return Action(
type=ActionType.INVALID,
args=(llm_response[:100],), # First 100 chars for debugging
raw_match=""
)
def _extract_args(self, match, num_groups: int, action_type: ActionType) -> tuple:
"""Extract and normalize arguments from regex match."""
if num_groups == 0:
return ()
args = []
for i in range(1, num_groups + 1):
group = match.group(i)
if group:
# Normalize directions
if action_type == ActionType.GO or (action_type == ActionType.PUSH and i == 2):
group = self.DIRECTIONS.get(group.upper(), group.upper())
args.append(group)
else:
args.append(None)
return tuple(args)
# Convenience function
def parse_action(llm_response: str) -> Action:
"""Parse an LLM response into an Action."""
return ActionParser().parse(llm_response)
```
---
## File 2: `action_executor.py`
```python
"""
Action Executor for McRogueFace
===============================
Executes parsed actions in the game world.
Handles movement, collision detection, and action results.
"""
from dataclasses import dataclass
from typing import Optional, List, Tuple
from action_parser import Action, ActionType
@dataclass
class ActionResult:
success: bool
message: str
new_position: Optional[Tuple[int, int]] = None
path: Optional[List[Tuple[int, int]]] = None # For animation replay
class ActionExecutor:
"""Execute actions in the McRogueFace game world."""
# Direction vectors
DIRECTION_VECTORS = {
'NORTH': (0, -1),
'SOUTH': (0, 1),
'EAST': (1, 0),
'WEST': (-1, 0),
}
def __init__(self, grid):
"""
Initialize executor with a grid reference.
Args:
grid: mcrfpy.Grid instance
"""
self.grid = grid
def execute(self, agent, action: Action) -> ActionResult:
"""
Execute an action for an agent.
Args:
agent: Agent wrapper with .entity attribute
action: Parsed Action to execute
Returns:
ActionResult with success status and message
"""
handlers = {
ActionType.GO: self._execute_go,
ActionType.WAIT: self._execute_wait,
ActionType.LOOK: self._execute_look,
ActionType.TAKE: self._execute_take,
ActionType.DROP: self._execute_drop,
ActionType.INVALID: self._execute_invalid,
}
handler = handlers.get(action.type, self._execute_unimplemented)
return handler(agent, action)
def _execute_go(self, agent, action: Action) -> ActionResult:
"""Execute movement in a direction."""
if not action.args or not action.args[0]:
return ActionResult(False, "No direction specified")
direction = action.args[0]
if direction not in self.DIRECTION_VECTORS:
return ActionResult(False, f"Invalid direction: {direction}")
dx, dy = self.DIRECTION_VECTORS[direction]
# Get current position
current_x, current_y = int(agent.entity.pos[0]), int(agent.entity.pos[1])
new_x, new_y = current_x + dx, current_y + dy
# Check bounds
grid_w, grid_h = self.grid.grid_size
if not (0 <= new_x < grid_w and 0 <= new_y < grid_h):
return ActionResult(False, f"Cannot go {direction} - edge of map")
# Check walkability
target_cell = self.grid.at(new_x, new_y)
if not target_cell.walkable:
return ActionResult(False, f"Cannot go {direction} - path blocked")
# Check for entity collision (optional - depends on game rules)
for entity in self.grid.entities:
if entity is agent.entity:
continue
ex, ey = int(entity.pos[0]), int(entity.pos[1])
if ex == new_x and ey == new_y:
return ActionResult(False, f"Cannot go {direction} - someone is there")
# Execute movement
agent.entity.grid_pos = (new_x, new_y)
return ActionResult(
success=True,
message=f"Moved {direction.lower()} to ({new_x}, {new_y})",
new_position=(new_x, new_y),
path=[(current_x, current_y), (new_x, new_y)]
)
def _execute_wait(self, agent, action: Action) -> ActionResult:
"""Execute wait action (no-op)."""
return ActionResult(True, "Waited and observed surroundings")
def _execute_look(self, agent, action: Action) -> ActionResult:
"""Execute look action - returns enhanced observation."""
target = action.args[0] if action.args else None
if target:
return ActionResult(True, f"Examined {target} closely")
return ActionResult(True, "Looked around carefully")
def _execute_take(self, agent, action: Action) -> ActionResult:
"""Execute take action (placeholder)."""
item = action.args[0] if action.args else "unknown"
# TODO: Implement inventory system
return ActionResult(False, f"Cannot take {item} - not implemented yet")
def _execute_drop(self, agent, action: Action) -> ActionResult:
"""Execute drop action (placeholder)."""
item = action.args[0] if action.args else "unknown"
return ActionResult(False, f"Cannot drop {item} - not implemented yet")
def _execute_invalid(self, agent, action: Action) -> ActionResult:
"""Handle invalid/unparseable action."""
return ActionResult(False, f"Could not understand action: {action.args[0]}")
def _execute_unimplemented(self, agent, action: Action) -> ActionResult:
"""Handle unimplemented action types."""
return ActionResult(False, f"Action {action.type.value} not yet implemented")
```
---
## Modifications to `1_multi_agent_demo.py`
Add these changes after the existing `query_agent` function:
```python
# Add imports at top
from action_parser import parse_action
from action_executor import ActionExecutor, ActionResult
# In run_demo(), after setup_scene():
executor = ActionExecutor(grid)
# Replace the agent loop with:
for i, agent in enumerate(agents):
print(f"\n{'='*70}")
print(f"Agent {i+1}/3: {agent.name} ({agent.description})")
print(f"Position: {agent.pos}")
print("=" * 70)
# Switch to this agent's perspective
switch_perspective(grid, fov_layer, agent)
mcrfpy.step(0.016)
# Take screenshot
screenshot_path = os.path.join(SCREENSHOT_DIR, f"{i}_{agent.name.lower()}_view.png")
result = automation.screenshot(screenshot_path)
if not result:
print(f"ERROR: Failed to take screenshot for {agent.name}")
continue
# Get visible entities and query VLLM
visible = get_visible_entities(grid, agent, agents, rat)
grounded_text = build_grounded_prompt(visible)
print(f"Grounded observations: {grounded_text}")
print(f"\nQuerying VLLM for {agent.name}...")
response = query_agent(agent, screenshot_path, grounded_text)
print(f"\n{agent.name}'s Response:\n{response}")
# NEW: Parse and execute action
print(f"\n--- Action Execution ---")
action = parse_action(response)
print(f"Parsed action: {action.type.value} {action.args}")
result = executor.execute(agent, action)
if result.success:
print(f"SUCCESS: {result.message}")
if result.new_position:
# Update perspective after movement
switch_perspective(grid, fov_layer, agent)
mcrfpy.step(0.016)
else:
print(f"FAILED: {result.message}")
```
---
## Testing
### Unit test for parser (`test_action_parser.py`):
```python
from action_parser import parse_action, ActionType
def test_parser():
# Explicit format
assert parse_action("Action: GO NORTH").type == ActionType.GO
assert parse_action("Action: GO NORTH").args == ("NORTH",)
# Short directions
assert parse_action("Action: GO E").args == ("EAST",)
# Case insensitive
assert parse_action("action: go south").type == ActionType.GO
# Fallback patterns
assert parse_action("I think I'll GO WEST").type == ActionType.GO
# Wait and Look
assert parse_action("Action: WAIT").type == ActionType.WAIT
assert parse_action("Action: LOOK").type == ActionType.LOOK
# Invalid
assert parse_action("I'm not sure what to do").type == ActionType.INVALID
print("All parser tests passed!")
if __name__ == "__main__":
test_parser()
```
---
## Success Criteria
- [ ] `action_parser.py` correctly parses all GO directions (N/S/E/W and full names)
- [ ] `action_parser.py` handles WAIT, LOOK, and INVALID cases
- [ ] `action_executor.py` moves entities when GO succeeds
- [ ] `action_executor.py` returns failure message when path is blocked
- [ ] Modified demo shows "Moved east to (5, 7)" style output
- [ ] Entities visibly change position between turns
---
## Notes for Integration (Hour 3)
The `ActionExecutor` will be enhanced in Hour 3 to:
- Use `WorldGraph` for room-based movement (GO NORTH = walk through door to next room)
- Support multi-tile pathfinding for room transitions
- Return path data for animation replay
Keep the current single-tile movement as the foundation.