Positions are always mcrfpy.Vector, Vector/tuple/iterables expected as inputs, and for position-only inputs we permit x,y args to prevent requiring double-parens
This commit is contained in:
parent
016ca693b5
commit
d2e4791f5a
25 changed files with 2109 additions and 636 deletions
156
tests/unit/test_grid_pathfinding_positions.py
Normal file
156
tests/unit/test_grid_pathfinding_positions.py
Normal file
|
|
@ -0,0 +1,156 @@
|
|||
#!/usr/bin/env python3
|
||||
"""Test Grid pathfinding methods with new position parsing.
|
||||
|
||||
Tests that Grid.find_path, Grid.compute_fov, etc. accept positions
|
||||
in multiple formats: tuples, lists, Vectors.
|
||||
"""
|
||||
import mcrfpy
|
||||
import sys
|
||||
|
||||
def run_tests():
|
||||
"""Run all grid pathfinding position parsing tests."""
|
||||
print("Testing Grid pathfinding position parsing...")
|
||||
|
||||
# Create a test grid
|
||||
texture = mcrfpy.Texture("assets/kenney_ice.png", 16, 16)
|
||||
grid = mcrfpy.Grid(grid_size=(10, 10), texture=texture, pos=(0, 0), size=(320, 320))
|
||||
|
||||
# Set up walkability: all cells walkable initially
|
||||
for y in range(10):
|
||||
for x in range(10):
|
||||
cell = grid.at((x, y))
|
||||
cell.walkable = True
|
||||
|
||||
# Add a wall in the middle
|
||||
grid.at((5, 5)).walkable = False
|
||||
|
||||
print(" Grid created with walkable cells and one wall at (5,5)")
|
||||
|
||||
# ============ Test find_path ============
|
||||
print("\n Testing find_path...")
|
||||
|
||||
# Test with tuple positions
|
||||
path1 = grid.find_path((0, 0), (3, 3))
|
||||
assert path1 is not None, "find_path with tuples returned None"
|
||||
assert len(path1) > 0, "find_path with tuples returned empty path"
|
||||
print(f" find_path((0,0), (3,3)) -> {len(path1)} steps: PASS")
|
||||
|
||||
# Test with list positions
|
||||
path2 = grid.find_path([0, 0], [3, 3])
|
||||
assert path2 is not None, "find_path with lists returned None"
|
||||
assert len(path2) > 0, "find_path with lists returned empty path"
|
||||
print(f" find_path([0,0], [3,3]) -> {len(path2)} steps: PASS")
|
||||
|
||||
# Test with Vector positions
|
||||
start_vec = mcrfpy.Vector(0, 0)
|
||||
end_vec = mcrfpy.Vector(3, 3)
|
||||
path3 = grid.find_path(start_vec, end_vec)
|
||||
assert path3 is not None, "find_path with Vectors returned None"
|
||||
assert len(path3) > 0, "find_path with Vectors returned empty path"
|
||||
print(f" find_path(Vector(0,0), Vector(3,3)) -> {len(path3)} steps: PASS")
|
||||
|
||||
# Test path with diagonal_cost parameter
|
||||
path4 = grid.find_path((0, 0), (3, 3), diagonal_cost=1.41)
|
||||
assert path4 is not None, "find_path with diagonal_cost returned None"
|
||||
print(f" find_path with diagonal_cost=1.41: PASS")
|
||||
|
||||
# ============ Test compute_fov / is_in_fov ============
|
||||
print("\n Testing compute_fov / is_in_fov...")
|
||||
|
||||
# All cells transparent for FOV testing
|
||||
for y in range(10):
|
||||
for x in range(10):
|
||||
cell = grid.at((x, y))
|
||||
cell.transparent = True
|
||||
|
||||
# Test compute_fov with tuple
|
||||
grid.compute_fov((5, 5), radius=5)
|
||||
print(" compute_fov((5,5), radius=5): PASS")
|
||||
|
||||
# Test is_in_fov with tuple
|
||||
in_fov1 = grid.is_in_fov((5, 5))
|
||||
assert in_fov1 == True, "Center should be in FOV"
|
||||
print(f" is_in_fov((5,5)) = {in_fov1}: PASS")
|
||||
|
||||
# Test is_in_fov with list
|
||||
in_fov2 = grid.is_in_fov([4, 5])
|
||||
assert in_fov2 == True, "Adjacent cell should be in FOV"
|
||||
print(f" is_in_fov([4,5]) = {in_fov2}: PASS")
|
||||
|
||||
# Test is_in_fov with Vector
|
||||
pos_vec = mcrfpy.Vector(6, 5)
|
||||
in_fov3 = grid.is_in_fov(pos_vec)
|
||||
assert in_fov3 == True, "Adjacent cell should be in FOV"
|
||||
print(f" is_in_fov(Vector(6,5)) = {in_fov3}: PASS")
|
||||
|
||||
# Test compute_fov with Vector
|
||||
center_vec = mcrfpy.Vector(3, 3)
|
||||
grid.compute_fov(center_vec, radius=3)
|
||||
print(" compute_fov(Vector(3,3), radius=3): PASS")
|
||||
|
||||
# ============ Test compute_dijkstra / get_dijkstra_* ============
|
||||
print("\n Testing Dijkstra methods...")
|
||||
|
||||
# Test compute_dijkstra with tuple
|
||||
grid.compute_dijkstra((0, 0))
|
||||
print(" compute_dijkstra((0,0)): PASS")
|
||||
|
||||
# Test get_dijkstra_distance with tuple
|
||||
dist1 = grid.get_dijkstra_distance((3, 3))
|
||||
assert dist1 is not None, "Distance should not be None for reachable cell"
|
||||
print(f" get_dijkstra_distance((3,3)) = {dist1:.2f}: PASS")
|
||||
|
||||
# Test get_dijkstra_distance with list
|
||||
dist2 = grid.get_dijkstra_distance([2, 2])
|
||||
assert dist2 is not None, "Distance should not be None for reachable cell"
|
||||
print(f" get_dijkstra_distance([2,2]) = {dist2:.2f}: PASS")
|
||||
|
||||
# Test get_dijkstra_distance with Vector
|
||||
dist3 = grid.get_dijkstra_distance(mcrfpy.Vector(1, 1))
|
||||
assert dist3 is not None, "Distance should not be None for reachable cell"
|
||||
print(f" get_dijkstra_distance(Vector(1,1)) = {dist3:.2f}: PASS")
|
||||
|
||||
# Test get_dijkstra_path with tuple
|
||||
dpath1 = grid.get_dijkstra_path((3, 3))
|
||||
assert dpath1 is not None, "Dijkstra path should not be None"
|
||||
print(f" get_dijkstra_path((3,3)) -> {len(dpath1)} steps: PASS")
|
||||
|
||||
# Test get_dijkstra_path with Vector
|
||||
dpath2 = grid.get_dijkstra_path(mcrfpy.Vector(4, 4))
|
||||
assert dpath2 is not None, "Dijkstra path should not be None"
|
||||
print(f" get_dijkstra_path(Vector(4,4)) -> {len(dpath2)} steps: PASS")
|
||||
|
||||
# ============ Test compute_astar_path ============
|
||||
print("\n Testing compute_astar_path...")
|
||||
|
||||
# Test with tuples
|
||||
apath1 = grid.compute_astar_path((0, 0), (3, 3))
|
||||
assert apath1 is not None, "A* path should not be None"
|
||||
print(f" compute_astar_path((0,0), (3,3)) -> {len(apath1)} steps: PASS")
|
||||
|
||||
# Test with lists
|
||||
apath2 = grid.compute_astar_path([1, 1], [4, 4])
|
||||
assert apath2 is not None, "A* path should not be None"
|
||||
print(f" compute_astar_path([1,1], [4,4]) -> {len(apath2)} steps: PASS")
|
||||
|
||||
# Test with Vectors
|
||||
apath3 = grid.compute_astar_path(mcrfpy.Vector(2, 2), mcrfpy.Vector(7, 7))
|
||||
assert apath3 is not None, "A* path should not be None"
|
||||
print(f" compute_astar_path(Vector(2,2), Vector(7,7)) -> {len(apath3)} steps: PASS")
|
||||
|
||||
print("\n" + "="*50)
|
||||
print("All grid pathfinding position tests PASSED!")
|
||||
print("="*50)
|
||||
return True
|
||||
|
||||
# Run tests
|
||||
try:
|
||||
success = run_tests()
|
||||
if success:
|
||||
print("\nPASS")
|
||||
sys.exit(0)
|
||||
except Exception as e:
|
||||
print(f"\nFAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
Loading…
Add table
Add a link
Reference in a new issue