feat: Add geometry module for orbital mechanics and spatial calculations

Implements issue #130 with:
- Basic utilities: distance, angle_between, normalize_angle, lerp, clamp
- Grid algorithms: bresenham_circle, bresenham_line, filled_circle
- OrbitalBody class with recursive positioning (star -> planet -> moon)
- OrbitingShip class for relative ship positioning on orbit rings
- Pathfinding helpers: nearest_orbit_entry, optimal_exit_heading,
  is_viable_waypoint, line_of_sight_blocked
- Comprehensive test suite (25+ tests)

Designed for Pinships turn-based space roguelike with:
- Discrete time steps (planets move in whole grid squares)
- Deterministic position projection
- Free orbital movement while in orbit
- Support for nested orbits (moons of moons)

closes #130

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
John McCardle 2025-11-26 00:26:14 -05:00
commit bc95cb1f0b
2 changed files with 1184 additions and 0 deletions

580
src/scripts/geometry.py Normal file
View file

@ -0,0 +1,580 @@
"""
Geometry module for turn-based games with orbital mechanics.
Designed for Pinships but reusable for any game needing:
- Circular orbit calculations
- Grid-aligned geometric primitives
- Recursive celestial body positioning
- Pathfinding helpers for orbital navigation
Philosophy: "C++ every frame, Python every game step"
This module handles game logic, not rendering.
"""
from __future__ import annotations
import math
from typing import Optional, List, Tuple, Set
from dataclasses import dataclass, field
# =============================================================================
# Basic Utility Functions
# =============================================================================
def distance(p1: Tuple[float, float], p2: Tuple[float, float]) -> float:
"""Euclidean distance between two points."""
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return math.sqrt(dx * dx + dy * dy)
def distance_squared(p1: Tuple[float, float], p2: Tuple[float, float]) -> float:
"""Squared distance (avoids sqrt, useful for comparisons)."""
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return dx * dx + dy * dy
def angle_between(p1: Tuple[float, float], p2: Tuple[float, float]) -> float:
"""
Angle from p1 to p2 in degrees (0-360).
0 degrees = east (+x), 90 = north (+y in screen coords, or south in math coords).
"""
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
angle = math.degrees(math.atan2(dy, dx))
return normalize_angle(angle)
def normalize_angle(angle: float) -> float:
"""Normalize angle to 0-360 range."""
angle = angle % 360
if angle < 0:
angle += 360
return angle
def angle_difference(a1: float, a2: float) -> float:
"""
Shortest angular distance between two angles (signed, -180 to 180).
Positive = counterclockwise from a1 to a2.
"""
diff = normalize_angle(a2) - normalize_angle(a1)
if diff > 180:
diff -= 360
elif diff < -180:
diff += 360
return diff
def lerp(a: float, b: float, t: float) -> float:
"""Linear interpolation from a to b by factor t (0-1)."""
return a + (b - a) * t
def clamp(value: float, min_val: float, max_val: float) -> float:
"""Clamp value to range [min_val, max_val]."""
return max(min_val, min(max_val, value))
def point_on_circle(
center: Tuple[float, float],
radius: float,
angle_degrees: float
) -> Tuple[float, float]:
"""Get point on circle at given angle (degrees)."""
angle_rad = math.radians(angle_degrees)
x = center[0] + radius * math.cos(angle_rad)
y = center[1] + radius * math.sin(angle_rad)
return (x, y)
def rotate_point(
point: Tuple[float, float],
center: Tuple[float, float],
angle_degrees: float
) -> Tuple[float, float]:
"""Rotate point around center by angle (degrees)."""
angle_rad = math.radians(angle_degrees)
cos_a = math.cos(angle_rad)
sin_a = math.sin(angle_rad)
# Translate to origin
px = point[0] - center[0]
py = point[1] - center[1]
# Rotate
rx = px * cos_a - py * sin_a
ry = px * sin_a + py * cos_a
# Translate back
return (rx + center[0], ry + center[1])
# =============================================================================
# Grid-Aligned Geometry (Bresenham algorithms)
# =============================================================================
def bresenham_circle(
center: Tuple[int, int],
radius: int
) -> List[Tuple[int, int]]:
"""
Generate all grid cells on a circle's perimeter using Bresenham's algorithm.
Returns cells in no particular order (use sort_circle_cells for ordering).
"""
if radius <= 0:
return [center]
cx, cy = center
cells: Set[Tuple[int, int]] = set()
x = 0
y = radius
d = 3 - 2 * radius
def add_circle_points(cx: int, cy: int, x: int, y: int):
"""Add all 8 symmetric points."""
cells.add((cx + x, cy + y))
cells.add((cx - x, cy + y))
cells.add((cx + x, cy - y))
cells.add((cx - x, cy - y))
cells.add((cx + y, cy + x))
cells.add((cx - y, cy + x))
cells.add((cx + y, cy - x))
cells.add((cx - y, cy - x))
add_circle_points(cx, cy, x, y)
while y >= x:
x += 1
if d > 0:
y -= 1
d = d + 4 * (x - y) + 10
else:
d = d + 4 * x + 6
add_circle_points(cx, cy, x, y)
return list(cells)
def sort_circle_cells(
cells: List[Tuple[int, int]],
center: Tuple[int, int]
) -> List[Tuple[int, int]]:
"""Sort circle cells by angle from center (for ordered traversal)."""
return sorted(cells, key=lambda p: angle_between(center, p))
def bresenham_line(
p1: Tuple[int, int],
p2: Tuple[int, int]
) -> List[Tuple[int, int]]:
"""Generate all grid cells on a line using Bresenham's algorithm."""
cells = []
x1, y1 = p1
x2, y2 = p2
dx = abs(x2 - x1)
dy = abs(y2 - y1)
sx = 1 if x1 < x2 else -1
sy = 1 if y1 < y2 else -1
err = dx - dy
while True:
cells.append((x1, y1))
if x1 == x2 and y1 == y2:
break
e2 = 2 * err
if e2 > -dy:
err -= dy
x1 += sx
if e2 < dx:
err += dx
y1 += sy
return cells
def filled_circle(
center: Tuple[int, int],
radius: int
) -> List[Tuple[int, int]]:
"""Generate all grid cells within a filled circle."""
if radius <= 0:
return [center]
cx, cy = center
cells = []
r_sq = radius * radius
for y in range(cy - radius, cy + radius + 1):
for x in range(cx - radius, cx + radius + 1):
if (x - cx) ** 2 + (y - cy) ** 2 <= r_sq:
cells.append((x, y))
return cells
# =============================================================================
# Orbital Body System
# =============================================================================
@dataclass
class OrbitalBody:
"""
A celestial body that may orbit another body.
Supports recursive orbits: star -> planet -> moon -> moon-of-moon
Position is calculated by walking up the parent chain.
"""
name: str
surface_radius: int # Physical size of the body
orbit_ring_radius: int # Distance from center where ships can orbit
# Orbital parameters (ignored if parent is None)
parent: Optional[OrbitalBody] = None
orbital_radius: float = 0.0 # Distance from parent's center
angular_velocity: float = 0.0 # Degrees per turn
initial_angle: float = 0.0 # Angle at t=0
# Base position (only used if parent is None, i.e., the star)
base_position: Tuple[int, int] = (0, 0)
def center_at_time(self, t: int) -> Tuple[float, float]:
"""
Get continuous (float) position at time t.
Recursively calculates position through parent chain.
"""
if self.parent is None:
# Stationary body (star)
return (float(self.base_position[0]), float(self.base_position[1]))
# Get parent's position at this time
parent_pos = self.parent.center_at_time(t)
# Calculate our angle at time t
angle = self.initial_angle + self.angular_velocity * t
# Calculate offset from parent
offset = point_on_circle((0, 0), self.orbital_radius, angle)
return (parent_pos[0] + offset[0], parent_pos[1] + offset[1])
def grid_position_at_time(self, t: int) -> Tuple[int, int]:
"""
Get snapped grid position at time t.
This is where the body appears on the discrete game grid.
"""
cx, cy = self.center_at_time(t)
return (round(cx), round(cy))
def surface_cells(self, t: int) -> List[Tuple[int, int]]:
"""Get all grid cells occupied by this body's surface at time t."""
return filled_circle(self.grid_position_at_time(t), self.surface_radius)
def orbit_ring_cells(self, t: int) -> List[Tuple[int, int]]:
"""
Get all grid cells forming the orbit ring at time t.
Ships can occupy these cells while orbiting this body.
"""
return bresenham_circle(self.grid_position_at_time(t), self.orbit_ring_radius)
def orbit_ring_cells_sorted(self, t: int) -> List[Tuple[int, int]]:
"""Get orbit ring cells sorted by angle (for ordered traversal)."""
center = self.grid_position_at_time(t)
cells = bresenham_circle(center, self.orbit_ring_radius)
return sort_circle_cells(cells, center)
def position_in_orbit(self, t: int, angle: float) -> Tuple[int, int]:
"""
Get the grid position for a ship orbiting this body at given angle.
The ship moves with the body - this returns absolute grid coords.
"""
center = self.grid_position_at_time(t)
pos = point_on_circle(center, self.orbit_ring_radius, angle)
return (round(pos[0]), round(pos[1]))
def is_inside_surface(self, point: Tuple[int, int], t: int) -> bool:
"""Check if a grid point is inside this body's surface."""
center = self.grid_position_at_time(t)
return distance_squared(center, point) <= self.surface_radius ** 2
def is_on_orbit_ring(self, point: Tuple[int, int], t: int) -> bool:
"""Check if a grid point is on this body's orbit ring."""
return point in self.orbit_ring_cells(t)
def nearest_orbit_angle(self, point: Tuple[float, float], t: int) -> float:
"""
Get the angle on the orbit ring closest to the given point.
Useful for determining where a ship would enter orbit.
"""
center = self.grid_position_at_time(t)
return angle_between(center, point)
def turns_until_position_changes(self, current_t: int) -> int:
"""
Calculate how many turns until this body's grid position changes.
Returns 0 if it changes next turn, -1 if it never moves (star).
"""
if self.parent is None:
return -1 # Stars don't move
current_pos = self.grid_position_at_time(current_t)
# Check future turns (reasonable limit to avoid infinite loop)
for dt in range(1, 1000):
future_pos = self.grid_position_at_time(current_t + dt)
if future_pos != current_pos:
return dt
return -1 # Essentially stationary (very slow orbit)
@dataclass
class OrbitingShip:
"""
A ship that is currently in orbit around a body.
When orbiting, position is relative to the body, not absolute grid coords.
The ship moves with the body automatically.
"""
body: OrbitalBody
orbital_angle: float # Position on orbit ring (degrees)
def grid_position_at_time(self, t: int) -> Tuple[int, int]:
"""Get absolute grid position at time t."""
return self.body.position_in_orbit(t, self.orbital_angle)
def move_along_orbit(self, angle_delta: float) -> None:
"""Move ship along the orbit ring (free movement while orbiting)."""
self.orbital_angle = normalize_angle(self.orbital_angle + angle_delta)
def set_orbit_angle(self, angle: float) -> None:
"""Set ship to specific angle on orbit ring."""
self.orbital_angle = normalize_angle(angle)
# =============================================================================
# Pathfinding Helpers
# =============================================================================
def nearest_orbit_entry(
ship_pos: Tuple[float, float],
body: OrbitalBody,
t: int
) -> Tuple[Tuple[int, int], float]:
"""
Find the nearest point on a body's orbit ring to enter.
Returns:
(grid_position, angle): Entry point and the orbital angle
"""
angle = body.nearest_orbit_angle(ship_pos, t)
entry_pos = body.position_in_orbit(t, angle)
return (entry_pos, angle)
def optimal_exit_heading(
body: OrbitalBody,
target: Tuple[float, float],
t: int
) -> Tuple[float, Tuple[int, int]]:
"""
Find the best angle to exit an orbit when heading toward a target.
Returns:
(exit_angle, exit_position): Best exit angle and grid position
"""
center = body.grid_position_at_time(t)
exit_angle = angle_between(center, target)
exit_pos = body.position_in_orbit(t, exit_angle)
return (exit_angle, exit_pos)
def is_viable_waypoint(
ship_pos: Tuple[float, float],
body: OrbitalBody,
target: Tuple[float, float],
t: int,
angle_threshold: float = 90.0
) -> bool:
"""
Check if an orbital body is a useful waypoint toward a target.
A body is viable if it's roughly "on the way" - the angle from
ship to body to target isn't too sharp (would be backtracking).
Args:
ship_pos: Ship's current position
body: Potential waypoint body
target: Final destination
t: Current time
angle_threshold: Maximum deflection angle (degrees)
Returns:
True if using this body's orbit could help reach target
"""
body_pos = body.grid_position_at_time(t)
# Angle from ship to body
angle_to_body = angle_between(ship_pos, body_pos)
# Angle from ship to target
angle_to_target = angle_between(ship_pos, target)
# How much would we deviate from direct path?
deviation = abs(angle_difference(angle_to_target, angle_to_body))
return deviation <= angle_threshold
def project_body_positions(
body: OrbitalBody,
start_t: int,
num_turns: int
) -> List[Tuple[int, Tuple[int, int]]]:
"""
Project a body's grid positions over future turns.
Returns:
List of (turn, grid_position) tuples
"""
positions = []
for dt in range(num_turns):
t = start_t + dt
pos = body.grid_position_at_time(t)
positions.append((t, pos))
return positions
def find_intercept_turn(
ship_pos: Tuple[float, float],
ship_speed: float,
body: OrbitalBody,
start_t: int,
max_turns: int = 100
) -> Optional[Tuple[int, Tuple[int, int]]]:
"""
Find when a ship could intercept a moving body's orbit.
Simple approach: check each future turn to see if ship could
reach the body's orbit ring by then.
Args:
ship_pos: Ship's starting position
ship_speed: Ship's movement per turn (grid units)
body: Target body to intercept
start_t: Current turn
max_turns: Maximum turns to search
Returns:
(turn, intercept_position) or None if no intercept found
"""
for dt in range(1, max_turns + 1):
t = start_t + dt
body_center = body.grid_position_at_time(t)
# Distance ship could travel
max_travel = ship_speed * dt
# Distance to body's orbit ring
dist_to_center = distance(ship_pos, body_center)
dist_to_orbit = abs(dist_to_center - body.orbit_ring_radius)
if dist_to_orbit <= max_travel:
# Ship could reach orbit this turn
entry_pos, _ = nearest_orbit_entry(ship_pos, body, t)
return (t, entry_pos)
return None
def line_of_sight_blocked(
p1: Tuple[int, int],
p2: Tuple[int, int],
bodies: List[OrbitalBody],
t: int
) -> Optional[OrbitalBody]:
"""
Check if line of sight between two points is blocked by any body's surface.
Returns:
The blocking body, or None if LOS is clear
"""
line_cells = set(bresenham_line(p1, p2))
for body in bodies:
surface = set(body.surface_cells(t))
if line_cells & surface: # Intersection
return body
return None
# =============================================================================
# Convenience Functions
# =============================================================================
def create_solar_system(
grid_width: int,
grid_height: int,
star_radius: int = 10,
star_orbit_radius: int = 15
) -> OrbitalBody:
"""
Create a star at the center of the grid.
Returns the star body (other bodies should use it as parent).
"""
return OrbitalBody(
name="Star",
surface_radius=star_radius,
orbit_ring_radius=star_orbit_radius,
parent=None,
base_position=(grid_width // 2, grid_height // 2)
)
def create_planet(
name: str,
star: OrbitalBody,
orbital_radius: float,
surface_radius: int,
orbit_ring_radius: int,
angular_velocity: float,
initial_angle: float = 0.0
) -> OrbitalBody:
"""Create a planet orbiting a star."""
return OrbitalBody(
name=name,
surface_radius=surface_radius,
orbit_ring_radius=orbit_ring_radius,
parent=star,
orbital_radius=orbital_radius,
angular_velocity=angular_velocity,
initial_angle=initial_angle
)
def create_moon(
name: str,
planet: OrbitalBody,
orbital_radius: float,
surface_radius: int,
orbit_ring_radius: int,
angular_velocity: float,
initial_angle: float = 0.0
) -> OrbitalBody:
"""Create a moon orbiting a planet (or another moon)."""
return OrbitalBody(
name=name,
surface_radius=surface_radius,
orbit_ring_radius=orbit_ring_radius,
parent=planet,
orbital_radius=orbital_radius,
angular_velocity=angular_velocity,
initial_angle=initial_angle
)