391 lines
12 KiB
Markdown
391 lines
12 KiB
Markdown
|
|
# Hour 1: Action Parser & Executor
|
||
|
|
|
||
|
|
**Issue**: #156 Turn-based LLM Agent Orchestration
|
||
|
|
**Goal**: Agents can actually move when they say "GO EAST"
|
||
|
|
**Parallelizable with**: Hour 2 (no dependencies)
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## Deliverables
|
||
|
|
|
||
|
|
1. `action_parser.py` - Parse LLM text responses into structured actions
|
||
|
|
2. `action_executor.py` - Execute parsed actions in the game world
|
||
|
|
3. Modified `1_multi_agent_demo.py` - Integrate parser/executor to show movement
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## File 1: `action_parser.py`
|
||
|
|
|
||
|
|
```python
|
||
|
|
"""
|
||
|
|
Action Parser for LLM Agent Responses
|
||
|
|
=====================================
|
||
|
|
|
||
|
|
Extracts structured actions from free-form LLM text responses.
|
||
|
|
Handles variations like "Action: GO EAST", "I'll go east", "GO E", etc.
|
||
|
|
"""
|
||
|
|
|
||
|
|
import re
|
||
|
|
from dataclasses import dataclass
|
||
|
|
from typing import Optional, Tuple, Any
|
||
|
|
from enum import Enum
|
||
|
|
|
||
|
|
class ActionType(Enum):
|
||
|
|
GO = "GO"
|
||
|
|
WAIT = "WAIT"
|
||
|
|
LOOK = "LOOK"
|
||
|
|
TAKE = "TAKE"
|
||
|
|
DROP = "DROP"
|
||
|
|
PUSH = "PUSH"
|
||
|
|
USE = "USE"
|
||
|
|
OPEN = "OPEN"
|
||
|
|
CLOSE = "CLOSE"
|
||
|
|
ANNOUNCE = "ANNOUNCE"
|
||
|
|
SPEAK = "SPEAK"
|
||
|
|
INVALID = "INVALID"
|
||
|
|
|
||
|
|
@dataclass
|
||
|
|
class Action:
|
||
|
|
type: ActionType
|
||
|
|
args: Tuple[Any, ...] = ()
|
||
|
|
raw_match: str = ""
|
||
|
|
|
||
|
|
class ActionParser:
|
||
|
|
"""Parse LLM responses into structured actions."""
|
||
|
|
|
||
|
|
# Direction normalization
|
||
|
|
DIRECTIONS = {
|
||
|
|
'N': 'NORTH', 'S': 'SOUTH', 'E': 'EAST', 'W': 'WEST',
|
||
|
|
'NORTH': 'NORTH', 'SOUTH': 'SOUTH', 'EAST': 'EAST', 'WEST': 'WEST',
|
||
|
|
'UP': 'NORTH', 'DOWN': 'SOUTH', 'LEFT': 'WEST', 'RIGHT': 'EAST',
|
||
|
|
}
|
||
|
|
|
||
|
|
# Patterns ordered by specificity (most specific first)
|
||
|
|
PATTERNS = [
|
||
|
|
# Explicit "Action: X" format (preferred)
|
||
|
|
(ActionType.GO, r'Action:\s*GO\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
|
||
|
|
(ActionType.WAIT, r'Action:\s*WAIT\b', 0),
|
||
|
|
(ActionType.LOOK, r'Action:\s*LOOK(?:\s+AT\s+(\w+))?\b', 1),
|
||
|
|
(ActionType.TAKE, r'Action:\s*TAKE\s+(\w+)', 1),
|
||
|
|
(ActionType.DROP, r'Action:\s*DROP\s+(\w+)', 1),
|
||
|
|
(ActionType.PUSH, r'Action:\s*PUSH\s+(\w+)\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)', 2),
|
||
|
|
(ActionType.USE, r'Action:\s*USE\s+(\w+)(?:\s+ON\s+(\w+))?', 2),
|
||
|
|
(ActionType.OPEN, r'Action:\s*OPEN\s+(\w+)', 1),
|
||
|
|
(ActionType.CLOSE, r'Action:\s*CLOSE\s+(\w+)', 1),
|
||
|
|
(ActionType.ANNOUNCE, r'Action:\s*ANNOUNCE\s+["\'](.+?)["\']', 1),
|
||
|
|
(ActionType.SPEAK, r'Action:\s*SPEAK\s+["\'](.+?)["\']', 1),
|
||
|
|
|
||
|
|
# Fallback patterns (less strict)
|
||
|
|
(ActionType.GO, r'\bGO\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
|
||
|
|
(ActionType.GO, r'\bmove\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
|
||
|
|
(ActionType.GO, r'\bhead\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
|
||
|
|
(ActionType.WAIT, r'\bWAIT\b', 0),
|
||
|
|
(ActionType.LOOK, r'\bLOOK\b', 0),
|
||
|
|
]
|
||
|
|
|
||
|
|
def parse(self, llm_response: str) -> Action:
|
||
|
|
"""
|
||
|
|
Parse an LLM response and extract the action.
|
||
|
|
|
||
|
|
Returns Action with type=INVALID if no valid action found.
|
||
|
|
"""
|
||
|
|
# Normalize to uppercase for matching
|
||
|
|
text = llm_response.upper()
|
||
|
|
|
||
|
|
for action_type, pattern, num_groups in self.PATTERNS:
|
||
|
|
match = re.search(pattern, text, re.IGNORECASE)
|
||
|
|
if match:
|
||
|
|
args = self._extract_args(match, num_groups, action_type)
|
||
|
|
return Action(
|
||
|
|
type=action_type,
|
||
|
|
args=args,
|
||
|
|
raw_match=match.group(0)
|
||
|
|
)
|
||
|
|
|
||
|
|
# No valid action found
|
||
|
|
return Action(
|
||
|
|
type=ActionType.INVALID,
|
||
|
|
args=(llm_response[:100],), # First 100 chars for debugging
|
||
|
|
raw_match=""
|
||
|
|
)
|
||
|
|
|
||
|
|
def _extract_args(self, match, num_groups: int, action_type: ActionType) -> tuple:
|
||
|
|
"""Extract and normalize arguments from regex match."""
|
||
|
|
if num_groups == 0:
|
||
|
|
return ()
|
||
|
|
|
||
|
|
args = []
|
||
|
|
for i in range(1, num_groups + 1):
|
||
|
|
group = match.group(i)
|
||
|
|
if group:
|
||
|
|
# Normalize directions
|
||
|
|
if action_type == ActionType.GO or (action_type == ActionType.PUSH and i == 2):
|
||
|
|
group = self.DIRECTIONS.get(group.upper(), group.upper())
|
||
|
|
args.append(group)
|
||
|
|
else:
|
||
|
|
args.append(None)
|
||
|
|
|
||
|
|
return tuple(args)
|
||
|
|
|
||
|
|
|
||
|
|
# Convenience function
|
||
|
|
def parse_action(llm_response: str) -> Action:
|
||
|
|
"""Parse an LLM response into an Action."""
|
||
|
|
return ActionParser().parse(llm_response)
|
||
|
|
```
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## File 2: `action_executor.py`
|
||
|
|
|
||
|
|
```python
|
||
|
|
"""
|
||
|
|
Action Executor for McRogueFace
|
||
|
|
===============================
|
||
|
|
|
||
|
|
Executes parsed actions in the game world.
|
||
|
|
Handles movement, collision detection, and action results.
|
||
|
|
"""
|
||
|
|
|
||
|
|
from dataclasses import dataclass
|
||
|
|
from typing import Optional, List, Tuple
|
||
|
|
from action_parser import Action, ActionType
|
||
|
|
|
||
|
|
@dataclass
|
||
|
|
class ActionResult:
|
||
|
|
success: bool
|
||
|
|
message: str
|
||
|
|
new_position: Optional[Tuple[int, int]] = None
|
||
|
|
path: Optional[List[Tuple[int, int]]] = None # For animation replay
|
||
|
|
|
||
|
|
class ActionExecutor:
|
||
|
|
"""Execute actions in the McRogueFace game world."""
|
||
|
|
|
||
|
|
# Direction vectors
|
||
|
|
DIRECTION_VECTORS = {
|
||
|
|
'NORTH': (0, -1),
|
||
|
|
'SOUTH': (0, 1),
|
||
|
|
'EAST': (1, 0),
|
||
|
|
'WEST': (-1, 0),
|
||
|
|
}
|
||
|
|
|
||
|
|
def __init__(self, grid):
|
||
|
|
"""
|
||
|
|
Initialize executor with a grid reference.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
grid: mcrfpy.Grid instance
|
||
|
|
"""
|
||
|
|
self.grid = grid
|
||
|
|
|
||
|
|
def execute(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""
|
||
|
|
Execute an action for an agent.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
agent: Agent wrapper with .entity attribute
|
||
|
|
action: Parsed Action to execute
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
ActionResult with success status and message
|
||
|
|
"""
|
||
|
|
handlers = {
|
||
|
|
ActionType.GO: self._execute_go,
|
||
|
|
ActionType.WAIT: self._execute_wait,
|
||
|
|
ActionType.LOOK: self._execute_look,
|
||
|
|
ActionType.TAKE: self._execute_take,
|
||
|
|
ActionType.DROP: self._execute_drop,
|
||
|
|
ActionType.INVALID: self._execute_invalid,
|
||
|
|
}
|
||
|
|
|
||
|
|
handler = handlers.get(action.type, self._execute_unimplemented)
|
||
|
|
return handler(agent, action)
|
||
|
|
|
||
|
|
def _execute_go(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""Execute movement in a direction."""
|
||
|
|
if not action.args or not action.args[0]:
|
||
|
|
return ActionResult(False, "No direction specified")
|
||
|
|
|
||
|
|
direction = action.args[0]
|
||
|
|
if direction not in self.DIRECTION_VECTORS:
|
||
|
|
return ActionResult(False, f"Invalid direction: {direction}")
|
||
|
|
|
||
|
|
dx, dy = self.DIRECTION_VECTORS[direction]
|
||
|
|
|
||
|
|
# Get current position
|
||
|
|
current_x, current_y = int(agent.entity.pos[0]), int(agent.entity.pos[1])
|
||
|
|
new_x, new_y = current_x + dx, current_y + dy
|
||
|
|
|
||
|
|
# Check bounds
|
||
|
|
grid_w, grid_h = self.grid.grid_size
|
||
|
|
if not (0 <= new_x < grid_w and 0 <= new_y < grid_h):
|
||
|
|
return ActionResult(False, f"Cannot go {direction} - edge of map")
|
||
|
|
|
||
|
|
# Check walkability
|
||
|
|
target_cell = self.grid.at(new_x, new_y)
|
||
|
|
if not target_cell.walkable:
|
||
|
|
return ActionResult(False, f"Cannot go {direction} - path blocked")
|
||
|
|
|
||
|
|
# Check for entity collision (optional - depends on game rules)
|
||
|
|
for entity in self.grid.entities:
|
||
|
|
if entity is agent.entity:
|
||
|
|
continue
|
||
|
|
ex, ey = int(entity.pos[0]), int(entity.pos[1])
|
||
|
|
if ex == new_x and ey == new_y:
|
||
|
|
return ActionResult(False, f"Cannot go {direction} - someone is there")
|
||
|
|
|
||
|
|
# Execute movement
|
||
|
|
agent.entity.grid_pos = (new_x, new_y)
|
||
|
|
|
||
|
|
return ActionResult(
|
||
|
|
success=True,
|
||
|
|
message=f"Moved {direction.lower()} to ({new_x}, {new_y})",
|
||
|
|
new_position=(new_x, new_y),
|
||
|
|
path=[(current_x, current_y), (new_x, new_y)]
|
||
|
|
)
|
||
|
|
|
||
|
|
def _execute_wait(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""Execute wait action (no-op)."""
|
||
|
|
return ActionResult(True, "Waited and observed surroundings")
|
||
|
|
|
||
|
|
def _execute_look(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""Execute look action - returns enhanced observation."""
|
||
|
|
target = action.args[0] if action.args else None
|
||
|
|
if target:
|
||
|
|
return ActionResult(True, f"Examined {target} closely")
|
||
|
|
return ActionResult(True, "Looked around carefully")
|
||
|
|
|
||
|
|
def _execute_take(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""Execute take action (placeholder)."""
|
||
|
|
item = action.args[0] if action.args else "unknown"
|
||
|
|
# TODO: Implement inventory system
|
||
|
|
return ActionResult(False, f"Cannot take {item} - not implemented yet")
|
||
|
|
|
||
|
|
def _execute_drop(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""Execute drop action (placeholder)."""
|
||
|
|
item = action.args[0] if action.args else "unknown"
|
||
|
|
return ActionResult(False, f"Cannot drop {item} - not implemented yet")
|
||
|
|
|
||
|
|
def _execute_invalid(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""Handle invalid/unparseable action."""
|
||
|
|
return ActionResult(False, f"Could not understand action: {action.args[0]}")
|
||
|
|
|
||
|
|
def _execute_unimplemented(self, agent, action: Action) -> ActionResult:
|
||
|
|
"""Handle unimplemented action types."""
|
||
|
|
return ActionResult(False, f"Action {action.type.value} not yet implemented")
|
||
|
|
```
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## Modifications to `1_multi_agent_demo.py`
|
||
|
|
|
||
|
|
Add these changes after the existing `query_agent` function:
|
||
|
|
|
||
|
|
```python
|
||
|
|
# Add imports at top
|
||
|
|
from action_parser import parse_action
|
||
|
|
from action_executor import ActionExecutor, ActionResult
|
||
|
|
|
||
|
|
# In run_demo(), after setup_scene():
|
||
|
|
executor = ActionExecutor(grid)
|
||
|
|
|
||
|
|
# Replace the agent loop with:
|
||
|
|
for i, agent in enumerate(agents):
|
||
|
|
print(f"\n{'='*70}")
|
||
|
|
print(f"Agent {i+1}/3: {agent.name} ({agent.description})")
|
||
|
|
print(f"Position: {agent.pos}")
|
||
|
|
print("=" * 70)
|
||
|
|
|
||
|
|
# Switch to this agent's perspective
|
||
|
|
switch_perspective(grid, fov_layer, agent)
|
||
|
|
mcrfpy.step(0.016)
|
||
|
|
|
||
|
|
# Take screenshot
|
||
|
|
screenshot_path = os.path.join(SCREENSHOT_DIR, f"{i}_{agent.name.lower()}_view.png")
|
||
|
|
result = automation.screenshot(screenshot_path)
|
||
|
|
if not result:
|
||
|
|
print(f"ERROR: Failed to take screenshot for {agent.name}")
|
||
|
|
continue
|
||
|
|
|
||
|
|
# Get visible entities and query VLLM
|
||
|
|
visible = get_visible_entities(grid, agent, agents, rat)
|
||
|
|
grounded_text = build_grounded_prompt(visible)
|
||
|
|
print(f"Grounded observations: {grounded_text}")
|
||
|
|
|
||
|
|
print(f"\nQuerying VLLM for {agent.name}...")
|
||
|
|
response = query_agent(agent, screenshot_path, grounded_text)
|
||
|
|
print(f"\n{agent.name}'s Response:\n{response}")
|
||
|
|
|
||
|
|
# NEW: Parse and execute action
|
||
|
|
print(f"\n--- Action Execution ---")
|
||
|
|
action = parse_action(response)
|
||
|
|
print(f"Parsed action: {action.type.value} {action.args}")
|
||
|
|
|
||
|
|
result = executor.execute(agent, action)
|
||
|
|
if result.success:
|
||
|
|
print(f"SUCCESS: {result.message}")
|
||
|
|
if result.new_position:
|
||
|
|
# Update perspective after movement
|
||
|
|
switch_perspective(grid, fov_layer, agent)
|
||
|
|
mcrfpy.step(0.016)
|
||
|
|
else:
|
||
|
|
print(f"FAILED: {result.message}")
|
||
|
|
```
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## Testing
|
||
|
|
|
||
|
|
### Unit test for parser (`test_action_parser.py`):
|
||
|
|
|
||
|
|
```python
|
||
|
|
from action_parser import parse_action, ActionType
|
||
|
|
|
||
|
|
def test_parser():
|
||
|
|
# Explicit format
|
||
|
|
assert parse_action("Action: GO NORTH").type == ActionType.GO
|
||
|
|
assert parse_action("Action: GO NORTH").args == ("NORTH",)
|
||
|
|
|
||
|
|
# Short directions
|
||
|
|
assert parse_action("Action: GO E").args == ("EAST",)
|
||
|
|
|
||
|
|
# Case insensitive
|
||
|
|
assert parse_action("action: go south").type == ActionType.GO
|
||
|
|
|
||
|
|
# Fallback patterns
|
||
|
|
assert parse_action("I think I'll GO WEST").type == ActionType.GO
|
||
|
|
|
||
|
|
# Wait and Look
|
||
|
|
assert parse_action("Action: WAIT").type == ActionType.WAIT
|
||
|
|
assert parse_action("Action: LOOK").type == ActionType.LOOK
|
||
|
|
|
||
|
|
# Invalid
|
||
|
|
assert parse_action("I'm not sure what to do").type == ActionType.INVALID
|
||
|
|
|
||
|
|
print("All parser tests passed!")
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
test_parser()
|
||
|
|
```
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## Success Criteria
|
||
|
|
|
||
|
|
- [ ] `action_parser.py` correctly parses all GO directions (N/S/E/W and full names)
|
||
|
|
- [ ] `action_parser.py` handles WAIT, LOOK, and INVALID cases
|
||
|
|
- [ ] `action_executor.py` moves entities when GO succeeds
|
||
|
|
- [ ] `action_executor.py` returns failure message when path is blocked
|
||
|
|
- [ ] Modified demo shows "Moved east to (5, 7)" style output
|
||
|
|
- [ ] Entities visibly change position between turns
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## Notes for Integration (Hour 3)
|
||
|
|
|
||
|
|
The `ActionExecutor` will be enhanced in Hour 3 to:
|
||
|
|
- Use `WorldGraph` for room-based movement (GO NORTH = walk through door to next room)
|
||
|
|
- Support multi-tile pathfinding for room transitions
|
||
|
|
- Return path data for animation replay
|
||
|
|
|
||
|
|
Keep the current single-tile movement as the foundation.
|