#!/usr/bin/env python3 """Entity Performance Benchmark for #115 (SpatialHash) and #117 (Memory Pool) Target: 10,000 entities on 1000×1000 grid Goal: Establish baseline metrics for spatial query and memory performance Scenarios: B1: Entity creation stress (measures allocation overhead) B2: Full iteration (measures cache locality) B3: Single range query (measures current O(n) cost) B4: N-to-N visibility (the "what can everyone see" problem) B5: Movement churn (measures update cost for spatial index) Usage: cd build && ./mcrogueface --headless --exec ../tests/benchmarks/entity_scale_benchmark.py Expected output: Baseline timings and projected gains from #115/#117 implementations. """ import mcrfpy import sys import time import random # Configuration # Use smaller grid for denser entity distribution (more realistic visibility tests) #GRID_SIZE = (100, 100) # 10,000 cells - entities will actually see each other GRID_SIZE = (1250, 1250) # Full suite - may timeout on large counts due to O(n²) visibility # ENTITY_COUNTS = [100, 500, 1000, 2500, 5000, 10000] # Extended suite to validate scalability (on 100x100 grid) ENTITY_COUNTS = [100, 500, 1000, 5000] QUERY_RADIUS = 15 # Smaller radius for smaller grid MOVEMENT_PERCENT = 0.10 # 10% of entities move each frame N2N_SAMPLE_SIZE = 50 # Sample size for N×N visibility test results = {} texture = None def setup_grid_with_entities(n_entities): """Create a grid and populate with n entities at random positions.""" global texture scene_name = f"bench_{n_entities}" _scene = mcrfpy.Scene(scene_name) ui = _scene.children # Create grid - minimal rendering size since we're testing entity operations #grid = mcrfpy.Grid(grid_size=GRID_SIZE, pos=(0, 0), size=(100, 100)) grid = mcrfpy.Grid(grid_size=GRID_SIZE, pos=(0, 0), size=(1024, 768)) ui.append(grid) # Load texture once if texture is None: try: texture = mcrfpy.Texture("assets/kenney_tinydungeon.png", 16, 16) except Exception as e: print(f"ERROR: Could not load texture: {e}") return None, None # Create entities for i in range(n_entities): x = random.randint(0, GRID_SIZE[0] - 1) y = random.randint(0, GRID_SIZE[1] - 1) entity = mcrfpy.Entity((x, y), texture, 0, grid) grid.entities.append(entity) mcrfpy.current_scene = scene_name return grid, scene_name def benchmark_creation(n_entities): """B1: Measure time to create N entities from scratch.""" global texture scene_name = "bench_create_test" _scene = mcrfpy.Scene(scene_name) ui = _scene.children grid = mcrfpy.Grid(grid_size=GRID_SIZE, pos=(0, 0), size=(100, 100)) ui.append(grid) if texture is None: try: texture = mcrfpy.Texture("assets/kenney_tinydungeon.png", 16, 16) except Exception as e: print(f"ERROR: Could not load texture: {e}") return None # Time just the entity creation loop start = time.perf_counter() for i in range(n_entities): x = random.randint(0, GRID_SIZE[0] - 1) y = random.randint(0, GRID_SIZE[1] - 1) entity = mcrfpy.Entity((x, y), texture, 0, grid) grid.entities.append(entity) elapsed = time.perf_counter() - start return elapsed * 1000 # ms def benchmark_iteration(grid): """B2: Measure time to iterate all entities and read position.""" entities_list = list(grid.entities) # Convert to list first n = len(entities_list) start = time.perf_counter() total_x = 0.0 for entity in entities_list: total_x += entity.x # Force read of position elapsed = time.perf_counter() - start return elapsed * 1000, n # ms, count def benchmark_iteration_via_collection(grid): """B2b: Measure iteration directly through EntityCollection.""" start = time.perf_counter() total_x = 0.0 for entity in grid.entities: total_x += entity.x elapsed = time.perf_counter() - start return elapsed * 1000 # ms def benchmark_range_query(entity, radius): """B3: Measure single visible_entities call (current O(n) implementation).""" start = time.perf_counter() visible = entity.visible_entities(radius=radius) elapsed = time.perf_counter() - start return elapsed * 1000, len(visible) # ms, count def benchmark_range_query_spatial(grid, x, y, radius): """B3b: Measure grid.entities_in_radius call (SpatialHash O(k) implementation).""" start = time.perf_counter() visible = grid.entities_in_radius(x, y, radius) elapsed = time.perf_counter() - start return elapsed * 1000, len(visible) # ms, count def benchmark_n_to_n_visibility(grid, radius, sample_size): """B4: Measure visibility queries for a sample of entities. This simulates "what can every entity see" which is O(N²) currently. We sample to avoid timeouts on large entity counts. """ entities_list = list(grid.entities) n = len(entities_list) actual_sample = min(sample_size, n) sample = random.sample(entities_list, actual_sample) start = time.perf_counter() total_visible = 0 for entity in sample: visible = entity.visible_entities(radius=radius) total_visible += len(visible) elapsed = time.perf_counter() - start avg_visible = total_visible / actual_sample if actual_sample > 0 else 0 return elapsed * 1000, actual_sample, avg_visible # ms, sample_size, avg_found def benchmark_n_to_n_visibility_spatial(grid, radius, sample_size): """B4b: Measure N×N visibility using SpatialHash. Same test as B4 but uses grid.entities_in_radius() instead of entity.visible_entities(). """ entities_list = list(grid.entities) n = len(entities_list) actual_sample = min(sample_size, n) sample = random.sample(entities_list, actual_sample) start = time.perf_counter() total_visible = 0 for entity in sample: visible = grid.entities_in_radius(entity.x, entity.y, radius) total_visible += len(visible) elapsed = time.perf_counter() - start avg_visible = total_visible / actual_sample if actual_sample > 0 else 0 return elapsed * 1000, actual_sample, avg_visible # ms, sample_size, avg_found def benchmark_movement(grid, move_percent): """B5: Move a percentage of entities to random positions. Currently this is just position assignment (O(1) per entity). With SpatialHash, this would include hash bucket updates. """ entities_list = list(grid.entities) n = len(entities_list) to_move_count = int(n * move_percent) to_move = random.sample(entities_list, to_move_count) start = time.perf_counter() for entity in to_move: entity.x = random.randint(0, GRID_SIZE[0] - 1) entity.y = random.randint(0, GRID_SIZE[1] - 1) elapsed = time.perf_counter() - start return elapsed * 1000, to_move_count # ms, count def run_single_scale(n_entities): """Run all benchmarks for a single entity count.""" print(f"\n{'='*60}") print(f" {n_entities:,} ENTITIES on {GRID_SIZE[0]}x{GRID_SIZE[1]} grid") print(f"{'='*60}") # B1: Creation benchmark print("\n[B1] Entity Creation...") create_ms = benchmark_creation(n_entities) if create_ms is None: print(" FAILED: Could not load texture") return None entities_per_sec = n_entities / (create_ms / 1000) if create_ms > 0 else 0 print(f" Time: {create_ms:.2f}ms") print(f" Rate: {entities_per_sec:,.0f} entities/sec") # Setup grid for remaining tests grid, scene_name = setup_grid_with_entities(n_entities) if grid is None: return None # B2: Iteration benchmark print("\n[B2] Full Iteration (read all positions)...") iter_ms, count = benchmark_iteration(grid) iter_per_sec = count / (iter_ms / 1000) if iter_ms > 0 else 0 print(f" Time: {iter_ms:.3f}ms") print(f" Rate: {iter_per_sec:,.0f} reads/sec") # B2b: Iteration via collection iter_coll_ms = benchmark_iteration_via_collection(grid) print(f" Via EntityCollection: {iter_coll_ms:.3f}ms") # B3: Single range query print(f"\n[B3] Single Range Query (radius={QUERY_RADIUS})...") entities_list = list(grid.entities) # Pick entity near center of grid for representative query center_entities = [e for e in entities_list if 400 < e.x < 600 and 400 < e.y < 600] if center_entities: test_entity = center_entities[0] else: test_entity = entities_list[len(entities_list)//2] query_ms, found = benchmark_range_query(test_entity, QUERY_RADIUS) print(f" Time: {query_ms:.3f}ms") print(f" Found: {found} entities in range") print(f" Checked: {n_entities} entities (O(n) scan)") # B3b: SpatialHash range query print(f"\n[B3b] SpatialHash Range Query (radius={QUERY_RADIUS})...") spatial_query_ms, spatial_found = benchmark_range_query_spatial( grid, test_entity.x, test_entity.y, QUERY_RADIUS ) print(f" Time: {spatial_query_ms:.3f}ms") print(f" Found: {spatial_found} entities in range") if query_ms > 0: speedup = query_ms / spatial_query_ms if spatial_query_ms > 0 else float('inf') print(f" Speedup: {speedup:.1f}× faster than O(n) scan") # B4: N-to-N visibility print(f"\n[B4] N×N Visibility O(n) (sample={N2N_SAMPLE_SIZE})...") n2n_ms, sample_size, avg_visible = benchmark_n_to_n_visibility( grid, QUERY_RADIUS, N2N_SAMPLE_SIZE ) per_query_ms = n2n_ms / sample_size if sample_size > 0 else 0 print(f" Sample time: {n2n_ms:.2f}ms ({sample_size} queries)") print(f" Per query: {per_query_ms:.3f}ms") print(f" Avg visible: {avg_visible:.1f} entities") # Extrapolate to full N×N full_n2n_ms = per_query_ms * n_entities print(f" Estimated full N×N: {full_n2n_ms:,.0f}ms ({full_n2n_ms/1000:.1f}s)") # B4b: N-to-N visibility with SpatialHash print(f"\n[B4b] N×N Visibility SpatialHash (sample={N2N_SAMPLE_SIZE})...") n2n_spatial_ms, _, _ = benchmark_n_to_n_visibility_spatial( grid, QUERY_RADIUS, N2N_SAMPLE_SIZE ) per_query_spatial_ms = n2n_spatial_ms / sample_size if sample_size > 0 else 0 print(f" Sample time: {n2n_spatial_ms:.2f}ms ({sample_size} queries)") print(f" Per query: {per_query_spatial_ms:.3f}ms") full_n2n_spatial_ms = per_query_spatial_ms * n_entities print(f" Estimated full N×N: {full_n2n_spatial_ms:,.0f}ms ({full_n2n_spatial_ms/1000:.1f}s)") if n2n_ms > 0: n2n_speedup = n2n_ms / n2n_spatial_ms if n2n_spatial_ms > 0 else float('inf') print(f" Speedup: {n2n_speedup:.1f}× faster than O(n)") # B5: Movement print(f"\n[B5] Movement ({MOVEMENT_PERCENT*100:.0f}% of entities)...") move_ms, moved = benchmark_movement(grid, MOVEMENT_PERCENT) move_per_sec = moved / (move_ms / 1000) if move_ms > 0 else 0 print(f" Time: {move_ms:.3f}ms ({moved} entities)") print(f" Rate: {move_per_sec:,.0f} moves/sec") return { 'n': n_entities, 'create_ms': create_ms, 'create_rate': entities_per_sec, 'iter_ms': iter_ms, 'iter_coll_ms': iter_coll_ms, 'query_ms': query_ms, 'query_found': found, 'spatial_query_ms': spatial_query_ms, 'spatial_query_found': spatial_found, 'n2n_sample_ms': n2n_ms, 'n2n_per_query_ms': per_query_ms, 'n2n_avg_visible': avg_visible, 'n2n_full_estimate_ms': full_n2n_ms, 'n2n_spatial_ms': n2n_spatial_ms, 'n2n_spatial_full_estimate_ms': full_n2n_spatial_ms, 'move_ms': move_ms, 'move_count': moved, } def print_summary_table(): """Print a summary table of all results.""" print("\n" + "=" * 100) print("SUMMARY TABLE") print("=" * 100) header = f"{'Entities':>10} {'Create':>10} {'Iterate':>10} {'Query O(n)':>12} {'Query Hash':>12} {'N×N O(n)':>12} {'N×N Hash':>12}" print(header) print(f"{'':>10} {'(ms)':>10} {'(ms)':>10} {'(ms)':>12} {'(ms)':>12} {'(ms)':>12} {'(ms)':>12}") print("-" * 100) for n in sorted(results.keys()): r = results[n] speedup_q = r['query_ms'] / r['spatial_query_ms'] if r['spatial_query_ms'] > 0 else 0 speedup_n = r['n2n_full_estimate_ms'] / r['n2n_spatial_full_estimate_ms'] if r['n2n_spatial_full_estimate_ms'] > 0 else 0 print(f"{r['n']:>10,} {r['create_ms']:>10.1f} {r['iter_ms']:>10.2f} " f"{r['query_ms']:>12.3f} {r['spatial_query_ms']:>12.3f} " f"{r['n2n_full_estimate_ms']:>12,.0f} {r['n2n_spatial_full_estimate_ms']:>12,.0f}") print("\nSpatialHash Speedups:") for n in sorted(results.keys()): r = results[n] speedup_q = r['query_ms'] / r['spatial_query_ms'] if r['spatial_query_ms'] > 0 else float('inf') speedup_n = r['n2n_full_estimate_ms'] / r['n2n_spatial_full_estimate_ms'] if r['n2n_spatial_full_estimate_ms'] > 0 else float('inf') print(f" {r['n']:>6,} entities: Query {speedup_q:>5.1f}×, N×N {speedup_n:>5.1f}×") def print_analysis(): """Print performance analysis and projected gains.""" print("\n" + "=" * 80) print("ANALYSIS: Projected Gains from #115 (SpatialHash) and #117 (Memory Pool)") print("=" * 80) # Find largest test run max_n = max(results.keys()) r = results[max_n] print(f"\nBaseline at {max_n:,} entities:") print("-" * 40) # Creation analysis (#117) print(f"\n[#117 Memory Pool] Entity Creation:") print(f" Current: {r['create_ms']:.1f}ms ({r['create_rate']:,.0f}/sec)") projected_create = r['create_ms'] / 25 print(f" Projected: ~{projected_create:.1f}ms (25× faster)") print(f" Rationale: Pool allocation eliminates malloc overhead per entity") # Iteration analysis (#117) print(f"\n[#117 Memory Pool] Iteration:") print(f" Current: {r['iter_ms']:.2f}ms") projected_iter = r['iter_ms'] / 5 print(f" Projected: ~{projected_iter:.2f}ms (5× faster)") print(f" Rationale: Contiguous memory improves CPU cache utilization") # Range query analysis (#115) print(f"\n[#115 SpatialHash] Range Query:") print(f" Current: {r['query_ms']:.2f}ms (checks {max_n:,} entities)") print(f" Found: {r['query_found']} entities in radius {QUERY_RADIUS}") # Calculate expected speedup # With spatial hash, we only check entities in nearby buckets # Bucket size typically 32-64 cells, so for radius 25 we check ~4-16 buckets # Each bucket has ~10 entities at 0.01 density expected_checks = max(r['query_found'] * 5, 100) # Conservative estimate speedup = max_n / expected_checks projected_query = r['query_ms'] / speedup print(f" Projected: ~{projected_query:.3f}ms ({speedup:.0f}× faster)") print(f" Rationale: Only check ~{expected_checks} entities in nearby hash buckets") # N×N analysis (#115) print(f"\n[#115 SpatialHash] N×N Visibility:") print(f" Current: {r['n2n_full_estimate_ms']:,.0f}ms ({r['n2n_full_estimate_ms']/1000:.1f}s)") projected_n2n = r['n2n_full_estimate_ms'] / speedup print(f" Projected: ~{projected_n2n:,.0f}ms ({projected_n2n/1000:.2f}s)") print(f" Rationale: Each of N queries benefits from {speedup:.0f}× speedup") # Combined benefit print(f"\n[Combined] Per-Frame Budget Analysis:") print(f" Target: 16.67ms (60 FPS)") current_frame = r['iter_ms'] + r['move_ms'] + (r['n2n_per_query_ms'] * 100) # 100 AI entities print(f" Current (100 AI queries): ~{current_frame:.1f}ms") projected_frame = projected_iter + r['move_ms'] + (projected_query * 100) print(f" Projected: ~{projected_frame:.1f}ms") if current_frame > 16.67 and projected_frame < 16.67: print(f" Result: ENABLES 60 FPS with 100 AI entities") # Movement overhead warning print(f"\n[#115 SpatialHash] Movement Overhead:") print(f" Current: {r['move_ms']:.2f}ms (no index to update)") print(f" Projected: ~{r['move_ms'] * 1.5:.2f}ms (+50% for hash updates)") print(f" Note: This overhead is acceptable given query speedups") def run_benchmarks(timer=None, runtime=None): """Main benchmark runner.""" global results print("=" * 80) print("Entity Scale Benchmark Suite") print(f"Grid: {GRID_SIZE[0]}×{GRID_SIZE[1]}, Query Radius: {QUERY_RADIUS}") print(f"Testing entity counts: {ENTITY_COUNTS}") print("=" * 80) for n in ENTITY_COUNTS: result = run_single_scale(n) if result: results[n] = result if results: print_summary_table() print_analysis() print("\nBenchmark complete.") sys.exit(0) # Entry point if __name__ == "__main__": # For headless mode, run immediately # For interactive mode, use timer to let render loop start import sys if "--headless" in sys.argv or True: # Always run immediately for benchmarks run_benchmarks() else: bench_timer = mcrfpy.Timer("run_bench", run_benchmarks, 100, once=True)